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Abstract — The present paper describes a method for using more than three primaries in an additive-
primary display. The method ensures that each tristimulus specification can be produced in no more
than one way, even if a non-singular filter (i.e., one that does not reduce the dimensionality of color-
matching space) is interposed between the screen and the viewer. Starting with N primaries, the
method uses only three at a time, but these may be composites – fixed linear combinations of the
original N. As further insurance against on-screen metamerism, a criterion on the primary spectra,
based on the Binet-Cauchy theorem, ensures that a triad of primaries keeps its right/left-handed chro-
maticity ordering when a filter is interposed.
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1 Introduction
New display technologies that use more than three prima-
ries have been introduced into the marketplace by several
manufacturers.1 These displays can have a wider color
gamut than a conventional three-primary display whose
gamut is restricted to a triangle in chromaticity space. Addi-
tional motivations for more than three primaries include
better use of the photometric power of the light source and
improved tone-scale rendering of reconstructed images on
the display. A problem with these displays is that they
increase the possibilities for on-screen metamerism,
whereby observers may disagree on the equivalence of pairs
of colors on the screen. The problem arises because, if a
display has more than three primaries, many possible activa-
tions of the primaries exist that produce a given tristimulus
specification. Existing displays restrict the activations so as
to remove the ambiguity for, say, the 1931 CIE Standard
Observer, but the non-uniqueness reasserts itself when the
observer is changed through lens ageing or artificial lenses.
This paper will characterize on-screen metamerism and
provide design rules to mitigate it.

The use of more than three primaries may incur bene-
fits in several niches of display technology. Today, most thin
flat-panel active-matrix displays and projector displays
employ a single broadband white light source, i.e., a com-
pact arc lamp source or a fluorescent backlight. The light
source is modulated by amplitude-modulated spectral band-
pass filters to produce discrete levels of several primary col-
ors. In a liquid-crystal flat screen this is accomplished by
combining a spatially distributed liquid-crystal amplitude-
modulating light valve with a discrete color filter to define a
sub-pixel primary color distributed uniformly over the dis-
play surface area. Flat-panel direct-view display technology
relies on the eye’s spatial blur to mix discrete primary color
channels. Single-chip projection displays, e.g., display
devices that use a single spatial light modulation channel,
modulate light in several ways that include liquid-crystal

light valves, micro-mirrors, and diffraction. Here the mixing
of the primaries is enabled by the eye’s slow temporal re-
sponse or persistence. Such a display device always uses a
broad-spectrum arc lamp as the light source.

Solid-state light sources that are more efficient in con-
verting electrons into photons in the visible spectrum are
being developed for backlights and projector light sources.
These future light sources are capable of temporal modula-
tion that can be phased with spatially distributed amplitude
modulation to reconstruct imagery. This paper addresses
the problem of metamerism on current display devices and
on future devices that will employ these new light sources.

All devices that employ a spatial or temporal multi-
plex, broad-spectrum light sources and three-color prima-
ries require an engineering trade-off between color
saturation and brightness. The introduction of more than
three primaries gives the display designer additional lati-
tude to generate saturated colors and yet still render high-
contrast  edges  within  the  image. For example, the
introduction of a white primary in a quad sub-pixel spatial
arrangement, where each RGB triad pixel element is re-
placed with a RGBW quad, can increase the peak brightness
of the display substantially and still use the full photometric
power in the light source. The introduction of a white pri-
mary in a time-sequential projection display will also pro-
duce a brighter display with better color saturation. Since
saturated colors tend to be dark, the addition of a white
primary can substantially improve image quality, especially
for natural images.

Quantization of the tone scale in digital electronic dis-
plays can produce an unwanted banding artifact in image
regions that contain shallow intensity gradients. This artifact
reduces image quality and is highly objectionable. It is pro-
duced because the intensity spacing in some regions of the
tone scale is simply too big. The use of multiple primaries
can help the system designer defeat this quantization arti-
fact. Introducing additional color primaries in either spatial
or temporal multiplexed systems necessarily reduces the
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peak brightness of all the primaries. The choice of chro-
maticities and luminance ratios for the primaries gives the
display designer more degrees of freedom to reduce the
tone-scale step size between levels and thereby improve
image quality by eliminating banding artifacts. However, an
additional primary introduces the potential for metamer-
ism. We address this problem and provide design rules for
avoiding it.

2 On-screen metamerism: Some terminology

The CIE Standard Observer maps every possible screen
color made by any combination of primaries into a tristimu-
lus vector (each vector comprising three tristimulus values).
For the standard observer, identical tristimulus vectors cor-
respond to color matches. For every observer, screen
patches that have the same composition of primaries are
isomeric – i.e., they have physically identical power spectra,
and therefore they are also matched in color and brightness.
This implies that they share the same Standard Observer
tristimulus values. However, two lights that map to the same
Standard Observer tristimulus values need not be isomeric.
These lights, called metamers, are physically different lights
that appear to be  matched in color and brightness.
Metameric equivalence is unique to the individual, so
metamers defined by Standard Observer tristimulus values
may not be metamers for real observers. The reason for this
is that real observers differ from the CIE Standard Observer,
mainly by the interposition of a non-neutral filter charac-
terized by the individual’s unique coloration in optical
media and retinal pigmentation. Moreover, these coloration
differences continue to change throughout life due to lens
aging, artificial lenses, age-related changes in retinal pig-
mentation, or even wearing sunglasses.

On-screen metamerism (matching of spectrally differ-
ent colors on the same display) does not arise for electronic
displays that use three-color primaries. For such displays, all
screen patches that are expected to appear identical are in
practice isomers and therefore appear identical to all observers.
Any set of three primaries employed in display applications
are volume-filling primaries. That means the corresponding
region of the Standard Observer’s color space, the display’s
palette in CIE color space, has dimension three. This also
implies that, in a three-color system, no two primaries can
be admixed in any proportions to color-match to any ampli-
tude (other than nil) of the third primary.

Three primaries that are volume filling to the Stand-
ard Observer may not be volume-filling for a trichromatic
observer related to the Standard Observer by an interposed
filter. To ensure volume-filling primaries for a filtered
Standard Observer implies a constraint on the filter and a
constraint on the spectra of the primaries. The primaries
must satisfy a criterion to be developed in Section 4 of this
article. The filter must be nonsingular, by which we mean

that it does not completely exclude any part of the visible
spectrum.

When a display system has N > 3 color primaries,
metamers may not be isomers, and on-screen metamerism
must be avoided by design choices. Two non-isomeric
screen patches produced by an N-primary display that map
to the same Standard Observer tristimulus values will al-
most certainly be seen as different by real observers. For
example, suppose two patches have primary activations 〈a1,
a2, ... , aN〉 and 〈b1, b2, ... , bN〉 (0 ≤ ai, bi ≤ 1), which map
into the same CIE 1931 tristimulus values for the standard
observer, but for which individuals will not agree on their
sameness because of the unique filter that each person looks
through. In that case, lights that are not isomers, but
metamers relative to the CIE standard, may not match to
individual real observers. Also, the standard observer could
see two screen colors as being different, whereas a real
observer might see them as being the same. Either case pro-
duces on-screen metamerism.

Eliminating on-screen metamerism in effect means
controlling the dimensionality of the subset of spectra
selected from the full palette of possible spectra that can be
produced on an N-primary display. The selected subset of
screen colors will map uniquely into the CIE Standard
Observer color space, so knowing the tristimulus values for
any screen color uniquely determines the associated N-tuple.

The issue of on-screen metamerism is adjacent to
some related topics that are not addressed by the present
article.

First of all, real color matches are not transitive in
practice: A matching B and B matching C does not ensure
that A matches C. Color matches have random errors asso-
ciated with the instrumentation and the observer. It is pos-
sible that two colors that are quite distinct to the CIE
standard observer will become mathematically distinct but
indistinguishable when a filter is interposed. Shall we call
this a match? In this article we define a match as the mathe-
matical equivalence, unaffected by “just-noticeable-differ-
ence” error. Such equivalence could conceivably have an
operational foundation such as described by Stanford pro-
fessor emeritus Joseph B. Keller: Two matching lights A and
B “really match” if any light C that matches A also matches
B. (Keller spoke at the New Jersey Institute of Technology
Nov. 14, 2001; see summary by M. Brill in the ISCC News
No. 394, Nov–Dec 2001, p. 16.)

Secondly, the prescription advanced here for avoiding
display-induced metamerism remains subject to the in-
creased color confusions that arise from observer color
blindness or any singular filter (i.e., a filter that reduces the
number of unique Standard Observer tristimulus outcomes
possible on the display). That is to say, dichromatic and
monochromatic color observers are characterized by the
property that they confuse a larger number of physically dif-
ferent lights than do normal trichromats. No modification to
any electronic display can remedy this condition.
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Thirdly, we do not address off-screen metamerism.
On-screen metamerism involves comparing pixels on the
same screen and not comparing on-screen colors with off-
screen reference colors. Thus, avoidance of on-screen
metamerism is very different from the problem of using suf-
ficient primaries to approximate the power spectrum of an
arbitrary patch of light in the outside world. When a display
renders a scene in a colorimetrically exact way, on-screen
metamerism does not disappear, but mimics what would
happen in the world.

Finally, we defer to future efforts the characterization
of the most likely personal filters to be encountered, and
also design of primaries based on color-perception effects of
such filters that transcend metameric matching. We are en-
couraged that, despite significant individually unique opti-
cal filtering of the light imaged onto human retinas, there is
broad general agreement with respect to color appearance
and the use of language to describe it.

3 Displays with three primaries and with
three primaries at-a-time
A three-primary display avoids on-screen metamerism because
each in-gamut tristimulus vector is produced by exactly one
RGB triplet, a simple matrix-inverse giving the rule of cor-
respondence. For an N-primary display, one can avoid
on-screen metamerism by activating only three primaries at
a time, so long as the primaries are well behaved under
action of an optical filter. The primaries, taken in triads,
should also tessellate the volume of the display's color palette.
To determine which three primaries to use, one can first
choose a triangular tiling of the chromaticity gamut of all the
primaries, then locate the target color in one of these trian-
gles, and finally produce the color using the primaries that
define that triangle.

Of course, the choice of micro-gamuts, i.e., primary
triads, for defining the partition will depend upon several
issues besides on-screen metamerism; for example, the
luminous efficiency of the display device and image quality
attributes such as avoiding tone-scale banding artifacts.
Incorporating such issues is a topic for further investigation.

4 Binet-Cauchy condition for spectra of primary
triplets
What constitutes good behavior of a triangle of primaries?
If the primaries are monochromatic, their chromaticities are
fixed, so no filter can change the triangle in which a target
chromaticity lies. Therefore, one can always produce an
in-gamut target chromaticity uniquely by using only the pri-
maries of the triangle in which it lies. There can be no
metamerism in that case. But having fixed chromaticities is
not necessary for primaries to exhibit good behavior. It is
necessary only that no triangle of primaries undergoes
right/left-handed reversal under filtering, i.e., that each tri-

angle of chromaticities is such that a filter will not make one
of the vertices cross the line between the other two. Such
reversal could cause one triangle to flop on top of another,
and there would be more than one allowed way to pro-
duce a color on the display. That would cause on-screen
metamerism.

Figure 1 illustrates how such metamerism could hap-
pen. Imagine a four-primary display with monochromatic
red, green, and blue (R, G, B) primaries at 610, 530, and 440
nm, and a cyan (C) primary that has 99% of its power at 500
nm and the rest at 610 nm. To the CIE observer, the chro-
maticity C1 of the C primary is almost but not quite on the
spectrum locus. Let a filter be interposed that reduces the
500-nm contribution 20-fold, but transmits completely the
long-wavelength end of the spectrum. The chromaticities of
the R, G, B primaries are unaffected by the filter, but the C
primary migrates across the line between G and B prima-
ries, so it resides at chromaticity C2. Now, even if we agree
to make colors only from triad BCG or triad BGR (depend-
ing on which triangle a target color inhabits), there are two
ways in the filtered condition to make a slightly cyan color.
If the target color is the C primary itself, we could use C or
use a combination of R, G, and B. This dichotomy is on-
screen metamerism: when the filter is taken away, the two
ways of matching C become visually distinct.

The example above is somewhat extreme relative to
today’s displays because the primaries are narrow band. It
serves nonetheless to illustrate the problem. In the future,
when solid-state light sources start to be incorporated into
display systems, this example will be strikingly similar to the

FIGURE 1 —Chromaticity space of a four-primary display, showing the
migration of the C primary from C1 to C2 when a filter is introduced.
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actual design choices awaiting the display design engineer.
The non-crossing criterion is therefore important. To ensure
it, one can impose a condition on the spectral power distri-
butions* (SPDs) of the primaries, which is mathematically
derivable using the Binet-Cauchy theorem.2–6 Constrain
the SPDs in wavelength λ of any three of the N primaries
Pi(λ), Pj(λ), and Pk(λ) so that the locus [Pi(λ), Pj(λ)]/[Pi(λ) +
Pj(λ) + Pk(λ)] is convex in wavelength λ. Primary spectra
that inhabit compact non-overlapping wavelength domains
will do the job, but others will too. A more detailed discus-
sion of the Binet-Cauchy criterion appears in Appendix A.

It is worth asking at this point to what extent real pri-
mary spectra obey the Binet-Cauchy criterion. In Fig. 2, the
three primaries of a high-end liquid-crystal display are
shown. Their “chromaticity” plot is shown in Fig. 3, and one
can see that the plot departs significantly from convexity. It
is therefore possible to design a filter that will reverse the
handedness of the chromaticities of the primaries. However,
such a filter would have to exclude enough light at the high-
emission wavelengths so that the nonconvexity (in parts of
the spectrum with low emission power density) could effect
the reversal. Such a personal filter would have little utility
in terms of Darwinian notions of value and thus seems unlikely
to occur naturally.

To use the Binet-Cauchy criterion in display design,
one may need to accommodate primary spectra that are
peaky, but in regions of the spectrum in which emitted
power is low enough to make filter-induced chromaticity re-
versal unlikely. Accordingly, a “lenient” Binet-Cauchy crite-
rion could be used that eliminates from the “spectrum
locus” certain problematic wavelengths. For example, one
could remove wavelengths whose power density in all three

primaries is below a criterion fraction of the sum of the
emission peaks. In Fig. 4, the criterion fraction is chosen to
be 0.01. It can be seen that the lenient criterion removes
most – but not all – of the nonconvexity. But we note that if
the primaries are narrow band spectrally, then narrow-band
filtering can easily generate singular (i.e., dimension-reduc-
ing) transforms on the tristimulus values either for the
Standard Observer or for the tristimulus space defining
each unique observer. In this case, enlarged equivalence
classes of metamers are likely. A display design criterion
might be to make the reconstructed colors as much like the
reference colors as possible. Further study will be needed
to refine the Binet-Cauchy criterion to a practical standard
and to address the problem of the off-screen reference color.

FIGURE 2 — Spectral power distributions of the primaries for an Apple®
17-in. LCD. FIGURE 3 —Binet-Cauchy plot for the primaries in Fig. 2, from 400 to

700 nm. Here, R, G, B are spectral power densities as functions of λ.

*In all strictness, the spectrum of an illumination source is a density and
transforms as such under domain changes such as wavelength-to-
wavenumber, but the term “distribution” is always used instead of the
more correct “density.”

FIGURE 4 —Binet-Cauchy plot of Fig. 3, with threshold at 0.01 max (R
+ G + B) over λ. As in Fig. 3, R, G, B are spectral power densities as
functions of λ.
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5 Composite primaries from monochromatic
simple primaries

The definition of on-screen metamerism implies that its
avoidance requires use of only three primaries (additive
degrees of freedom) at a time. At first this requirement
seems to limit luminance for chromaticities that could oth-
erwise be made from more than three of the N primaries.
However, we can get more luminance by expanding the defi-
nition of “additive primary” to include composite primaries,
fixed linear combinations of the N primaries.

Composite primaries defined relative to the Standard
Observer’s tristimulus values are column-vectors R for a tar-
get color and Rk (k = 1, ..., N) for fully activated primary k.
(Note: For monochromatic primaries, the chromaticity of
each primary is invariant to action of any filter over the eye,
but not so for the target color, of course.) If a target color is
a combination of three composite primaries, then R is a
linear combination of three fixed linear combinations of the
N simple primaries Rk:

(1)

Here, the R-independent 3 × N matrix A defines the com-
posite primaries. These primaries are linearly combined to
match R, using weights dj(R) that depend on R.

The eye integrates radiant power imaged on the retina
spectrally, spatially, and temporally, so if the simple prima-
ries are monochromatic, composite primaries derived from
them allow a greater luminance of chromaticities near white
than would be obtained from the simple primaries alone.

There are many possible ways to create a three-at-a-
time system for using composite primaries of a given N-pri-
mary display. First, designate a set of composite primaries
and tile chromaticity space with triangles of them, out to the
limits of the multi-primary gamut. For any target chromatic-
ity, render the color using only the three primaries (simple
or composite) in the uniquely defined triangle in which the
target color resides (in unfiltered state). In the process, be
sure the composite primaries (whose chromaticity depends
on the filter) cannot reverse the handedness of any chro-
maticity triangles; i.e., make sure that no interposed filter
can cause a composite primary to cross the line between two
other of the primaries, either simple or composite.

For example, let the monochromatic primaries be B,
C, G, Y, R, in obvious spectral order. Define doublet com-
posite primaries as tristimulus sums of spectrally adjacent
primaries: B + C, C + G, G + Y, Y + R, R + B. Filtering
causes a doublet primary to move only along the line be-
tween its constituent simple-primary chromaticities – and
these simple-primary chromaticities are filter-invariant.
Therefore, no triangle comprising any three of these prima-
ries (simple or composite) will undergo any chromaticity re-
versal by application of a filter. Finally, assign a single white
composite primary S = B + C + G + Y + R, which is guaran-
teed to lie within the pentagon of the doublet primaries, and

hence within the pentagon of the simple primaries. Then no
triangle among any of the primaries (singlet, doublet, or
pentuplet) will reverse with filtering. Accordingly, denote
the target-color triangular areas (B, B + C, R + B), (C, B +
C, C + G), (G, G + C, G + Y), (Y, Y + G, Y + R), (R, R + Y,
R + B), (S, R + B, B + C), (S, B + C, C + G), (S, C + G, G +
Y), (S, G + Y, Y + R), and (S, Y + R, R + B). This is an affinely
robust sort of “Fuller dome” anchored in the monochro-
matic primaries. (Of course, there is still a luminance price
to pay for intermediate-chroma colors, but this price will be
bearable so long as N is not too large.)

It should be noted that the chromaticities of the com-
posite primaries are not filter-invariant, even if the individ-
ual pr imaries have f i l ter- invariant chromaticit ies.
Therefore, only the Binet-Cauchy criterion will keep a color
gamut of more than three composite primaries from folding
on itself (hence, becoming metameric) as one applies a
filter.

6 Auxiliary conditions and composite primaries
This section deals with an alternative mathematical picture
of composite primaries. We include it only to prevent the
misconception that the picture describes something other
than composite primaries. Accordingly, the section can be
skipped with no practical implementation consequences.

For N > 3 monochromatic primaries, one can avoid
metamerism by imposing N – 3 auxiliary linear conditions
along with the tristimulus matching conditions. Define R
and Rk as before. Define an N-vector b of commanded gains
imposed for the N primaries to match R to the unfiltered
eye, so that

R = b1R1 + b2R2 + ... + bnRN. (2)

Impose the following auxiliary conditions on b so as to be
able to solve uniquely for b:

ci = ai1b1 + ai2b2 + ... + ainbN, (3)

where i = 1, ..., N – 3, ci are selected constants, and Rk are
the tristimulus vectors of the fully-activated primaries –
whose chromaticities are invariant to filter action. Of
course, the black point R = 0 must be allowed, so zero values
for all the bk must be allowed, and that forces all the ci to be
0. Care must be taken so that the auxiliary condition vectors
(ai1, ai2 ... ain) are linearly independent of the other row
vectors defined by (R1, ..., RN). Denote by M the N × N
matrix whose kth column comprises (in order) Rk and aik,
and denote by r the column N-vector comprising (in order)
R and (N – 3) entries 0. Then we have r = M b, and hence
can impose the gains b = M–1 r, predicated on the unfil-
tered eye.

It can be shown (see Appendix B) that using auxiliary
conditions is equivalent to using composite primaries. How-
ever, the composite-primary picture is more instructive than
the auxiliary-condition picture. For one thing, the use of
three simple primaries emerges as a clear sub-case. Also,
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some coefficient constraints are implied by the fact that only
nonnegative scales can be applied to each composite pri-
mary, and only nonnegative relative scales among the simple
primaries can comprise a viable composite primary. Thus
each composite-primary chromaticity must lie within the
gamut of the simple primaries that comprise it.

7 General use of composite primaries
The use of composite primaries in Section 5 can be extended
further, in two ways:

(1) The simple primaries need not be monochromatic
so long as their spectral power densities satisfy the Binet-
Cauchy criterion for all possible triangles (triads of simple
primaries) created from the N-gon of primaries. Also the
N-gon of primaries should be convex.

(2) The procedure for using composite primaries need
not stop after one iteration. One can develop an arbitrarily
large sequence of concentric N-gons, each successive N-
gon’s vertices lying on the respective sides of the previous
(larger) N-gon. This process automatically defines a set of N
triangles between each successive pair of N-gons, and those
triangles can never invert with scaling of the simple prima-
ries. When one chooses to end the process, the innermost
N-gon vertices are connected to the chromaticity S that is
the sum of the outermost N-gon tristimuli. That last process
creates N more triangles, which are also not invertible by
scaling of the simple primaries. This process works because

the point S is the tristimulus sum of the vertices of any one
of the N-gons, and hence filtering will not cause S to cross
any side of any N-gon.

To illustrate (2) above, add one more step to the exam-
ple in Section 5. The third-level composite primaries (com-
prising a pentagon) are defined by 2C + B + G, 2G + C + Y,
2Y + G + R, 2R + Y + B, and 2B + R + C. These primaries
are sums of the second-level composite primaries defining
the second-level pentagon. The method evolves new trian-
gles of the form CB, (2B + R + C), (2C + G + B), and so
forth. If one stopped generating pentagons at the third
level, the third-level vertices would be joined to S to give
triangles such as S, (2B + R + C), (2C + G + B). Proceeding
through M iterations on the basic-primary N-gon produces
MN triangles, none of which will reverse with filtering of
the basic-primaries. Note that this bootstrap approach
avoids the luminance-sagging problem of using only three
simple primaries at a time. The only drawback is the multi-
plicity of triangles, which will impose a proportionate com-
putational load.

8 Example of primary-set construction
The following algorithm implements the above considera-
tions:

Step 1. Make sure that any three of the N primary
spectra obey the Binet-Cauchy criterion (so the N do not
tangle up when filtered). Also assure the convexity of the
chromaticity-space N-gon of the primaries (to avoid defin-
ing overlapping triangles in steps 2–5 below).

Step 2. Starting with the original (parent) N-gon of
the simple primaries, add the tristimulus vectors of the pri-
maries from adjacent vertices of the N-gon to make second-
level composite primaries (an N-gon inscribed in the parent
N-gon). The triangles defined by the sides of the N-gons are
primary triads, and a target color within one triangle should
be rendered only by that triangle of primaries.

Step 3. Treat the second-level N-gon as the new par-
ent, and generate the third-level N-gon. Define primary tri-
angles between the second-level and third-level N-gons.

Step 4. Continue making triangles out of adjacent N-
gons as long as desired. (Of course, one could have skipped
steps 2 and 3 or step 3 if only one or two N-gons were
needed.) Then connect the vertices of the innermost N-gon
with the sum S of the parent primaries. That generates N
more triangles.

Step 5. Given an in-gamut target (x,y,Y), find its tri-
angle among the NM triangles generated in Steps 2–4, and
then use the primaries at the vertices of that triangle to ren-
der the color on the N-primary display.

The above algorithm is illustrated by the chromaticity
diagram in Fig. 5. The chromaticities of five simple mono-
chromatic primaries B, C, G, Y, R are connected by the red
pentagon. The monochromatic primaries are presumed to
have the same power at full activation, and have wave-
lengths 440, 470, 500, 550, and 630 nm. Second-level prima-

FIGURE 5 —Color space for a display with five monochromatic
primaries. Here, the chromaticity GC is the chromaticity of the
tristimulus sum of G and C, abbreviated as GC = G + C. Similarly, 2GCY
= G + C + G + Y, S = B + C + G + Y + R = BC + BR + YR + GY + GC,
etc.
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ries BC (which is the tristimulus sum of B and C), GC, GY,
YR, and BR are connected by the green pentagon. Third-
level primaries (e.g., 2GCY = 2G + C + Y) are connected by
the blue pentagon. The sum of all the primaries at first, sec-
ond, or third level, has the chromaticity of the white S at the
center of the diagram.

Figure 6 illustrates the distortion of the five-primary
system in Fig. 5 due to filter factors 1, 1/2, 1/4, 1/3, and 2/3
(from shortest to longest wavelength). Filtering leaves the
red pentagon fixed, slides the green vertices along the red-
pentagon sides, slides the blue vertices along the green pen-
tagon sides, and moves the white point within the blue
pentagon. These actions do not reverse any of the depicted
triangles. Note that even with such severe filtering, the lat-
ticework of the primaries (triangle vertices) remains undis-
turbed in its order.

9 Outlook
Practical realities may mitigate the direct use of the algo-
rithm described in Section 8. For example, real primaries
might violate the strict Binet-Cauchy criterion, in which
case gentler versions of that criterion will be needed.

If the chromaticity polygon of the simple primaries is
not convex (as required in Step 1 of the algorithm of Section
8), then the algorithm must be somewhat modified. For ex-
ample, if a white LED provides one of the simple primaries
(W) and the other simple primaries form a convex (N – 1)-
gon that contains W, that (N – 1)-gon is treated as the first
polygon in the algorithm. The Binet-Cauchy test is then ap-

plied not only to the simple primaries, but also to all triplets
involving the composite primaries and W. If W lies inside
the innermost N-gon and passes the Binet-Caushy test with
all doublets of composite primaries, then W replaces S as
the display white.

It should also be remembered that real displays rarely
are completely additive in their primaries: CRTs tend to
have weaker-than-additive white because of beam-current
loading and the use of limited output power supplies, and
LCDs do not achieve neutral blacks due to the dispersive
nature of the light valve. In a normally white LCD, for exam-
ple, the chromaticity of the black level tends to be bluish
due to incomplete extinction of light passing through the
blue sub-pixel elements. The cell gap in these displays is set
to extinguish the sub-pixel with the greatest luminosity,
which is always the green primary because its dominant
wavelength is closest to the photopic Vλ maximum. The pri-
maries of display devices that are not based on liquid crystal
light valves may also depart somewhat from chromaticity
invariance with respect to activation level. All these non-
ideal behaviors may cause overlapping between regions
driven by two neighboring triads of primaries. If the inver-
sions occur at low screen luminance (as most often is the
case), their expected conspicuity would be low.

In summary, the challenges that remain in display design
so as to mitigate on-screen metamerism seem manageable.
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Appendix A. Binet-Cauchy Criterion

Let Pi(λ) be the spectral power distribution of primary i in
a display. We will deal with three primaries at a time, so
without loss of generality i = 1, 2, 3. Let f(λ) be a filter
transmittance, and let qj(λ) be a set of CIE color-matching
functions. Then the tristimulus values Qji produced by pri-
maries Pi seen through filter f are given by

(A-1)

It is possible to write Eq. (A-1) as

(A-2)

Q f q P dji j i= z ( ) ( ) ( ) ,l l l l

Q q P= z f d( ) ( ) ( ) ,l l l lT

FIGURE 6 —Color space for the display of Fig. 5, but with filtered
primaries.

Journal of the SID 13/6, 2005 515



where Q is the 3 × 3 matrix with the components Qji, q(λ) is
a column-vector-valued function of λ comprising qj(λ), and
P(λ) is a column-vector-valued function of λ comprising
Pi(λ), and superscript T denotes matrix transposition.

Expressing the wavelength as a finite index (k = 1,...,
N), and the integral as a Riemann sum from 1 to N, converts
Eq. (A-2) to

Q = ATB, (A-3)

where Akj = f(k)qj(k) and Bki = Pi(k) dλ.
Now, the handedness of the chromaticity ordering of

P1, P2, P3 changes (i.e., the triangle flips) when the algebraic
sign on the determinant det(Q) changes. Therefore, if the
sign on det(Q) does not change with f, then the ordering is
filter-invariant. To show that sgn[det(Q)] does not change
with f, we invoke a restricted case of the Binet-Cauchy theo-
rem1–3:

(A-4)

where A(k,m,n) is the 3 × 3 block of A that comprises col-
umns k, m, n, and 1 ≤ k < m < n ≤ N. Each determinant
det[A(k,m,n)] evaluates to f(k) f(m) f(n) det[q(k,m,n)],
whose sign is the same as that of det[q(k,m,n)]. {Note:
Here, det[q(k,m,n)] is an abbreviation for det[q(k), q(m),
q(n)].} Because the spectrum locus is convex in wavelength,
the sign of det[q(k,m,n)] is independent of the choice of k,
m, and n. (The convexity of the CIE spectrum locus is re-
sponsible for the optimal-color solid having the familiar
stop-band and pass-band 1-0 reflectances noted by Ostwald,
Schroedinger, and MacAdam.7) Therefore, the sign of
det(Q) will be observer filter-invariant if the three primary
spectra have the following convexity property: The sign on
det[B(k,m,n)] does not depend on the choice of k, m, n, for
k < m < n.

The above statement of the convexity property is
equivalent to the following: If the primary spectra P1(λ),
P2(λ) , P3(λ) are considered analogous to color-matching
functions, they create a “spectrum locus” that is convex and
well ordered in wavelength. Hence, the 2-space point with
coordinates c1 = P1(λ)/[P1(λ) + P2(λ) + P3(λ)], c2 = P2(λ)/
[P1(λ) + P2(λ) + P3(λ)] traces out a convex curve in parame-
ter λ. Primary spectra that trace out such a curve will be said
to satisfy the Binet-Cauchy criterion. (Note: if the curve retraces
itself or doubles back on itself, it is not convex.)

Appendix B. Proof that auxiliary conditions
are equivalent to composite primaries
Combining Eqs. (1) and (2) implies

(B-1)

Substituting Eq. (B-1) into Eq. (3) (with ci = 0, of course)
and eliminating bk yields

(B-2)

Because dj(R) depends on R, each coefficient of dj(R) must
individually be zero, hence

(B-3)

for i = 1,...,N – 3 and j = 1, 2, 3. This means that the row
vectors of A are orthogonal to the row vectors of [a]. The
isomorphism is thereby shown: the composite-primary pic-
ture deals with the three-dimensional subspace of the pri-
maries, whereas the auxiliary-condition picture deals with
the (N – 3)-dimensional orthogonal complement space of
co-dimension 3.
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